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Abstract

The heat transfer coefficient between a molten.charge and its surroundings in a Bridgman

furnace was determined using a novel approach utilizing in-situ temperature measurement. The

ampoule containing an isothermal melt was suddenly moved from a higher temperature zone

to a lower temperature zone. The temperature-time history was used in a lumped-capacity

cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The

experimentally determined heat transfer coefficient was of the same order of magnitude as the

value estimated by standard heat transfer calculations.

1 Introduction
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A variety of directional solidification techniques are used for preparation of materials, espe-

cially for growth of single crystals. These include the vertical Bridgman-Stockbarger, horizontal

Bridgman, gradient freeze, and zone melting techniques. It is time consuming and costly to experi-

mentally determine the optimal thermal conditions of a furnace utilized to grow a specific material.

Hence, it is desirable to employ analytical and numerical models to assist in determining the optimal

thermal conditions for a specific growth system, e.g. Bridgman technique [1-6]. Such calculations

are handicapped by limited knowledge of the growth environment's thermal characteristics.
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The heat transfer coefficient, defined as the ratio of the heat flux to the temperature difference

between the material and the furnace, is an important thermal parameter in a growth system. The

heat transfer coefficient manifests itself in the heat transfer models as the Blot number hR/k, where



h is the heat transfer coeffcient, R is the sample radius, and k is the thermal conductivity of the

sample. The Blot number may be regarded as the ratio of the ease of heat exchange with the

furnace to heat conduction through the charge.

Chang and Wilcox Illshowed thatincreasingthe Blot number inBridgman growth affectsthe

positionand shape of the isothermsin the furnace.The sensitivityof interfacepositionto heater

and coolertemperatures isgreaterforsmallBiot number, i.e.small ampoule diameter,ineffective

heat transferfrom the ampoule surface(smallvalue of h), and high thermal conductivityof the

material.

Fu and Wilcox [2] showed that decreasing the Biot numbers in the heater and cooler of a vertical

Bridgman-Stockbarger system results in isotherms becoming less curved. The planar isotherms lie

in the lower portion of the adiabatic zone when the heater's Biot number is larger than the cooler's

Biot number. Increasing the cooler's Biot number moved the position of the planar interface toward

the upper section of the adiabatic zone.

Although the heat transfer coefficient may be estimated from heat transfer principles [5,7],

there are considerable uncertainties making an experimental value preferred. Here, we report

a novel approach to experimentally determine the average heat transfer coefficient between the

growth material and the furnace. This is accomplished by in-situ temperature measurement of

a transiently cooled object, i.e. melt or solid contained in an ampoule. In this technique, an

isothermal charge held at temperature T. is suddenly moved to a chamber at temperature Too.

The temperature in the charge as a function of time is measured using a thermocouple and the

data obtained are used to calculate the average heat transfer coefficient between the molten charge

and its surroundings using a lumped-capacity model. A GaSb charge was used to demonstrate the

method. The validity of the lumped-capacity model was examined by solving the one-dimensional

transient heat transfer problem between a rod and its surroundings and comparing the results

of this analysis with the lumped-capacity solution. The one-dimensional transient problem takes

radial temperature gradients in the rod into account. ,

2 Lumped-Capacity Model

The value of the heat transfer coefficient depends on the geometry of the system as well as the

physical properties and temperature of the material and its environment. A simple but important
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methodbased on a lumped-capacity solution [8] can be utilized to determine the average heat

transfer coefficient between an object and its surroundings from the transient cooling of the object.

This analysis assumes that the object is isothermal. This object at temperature To is introduced

suddenly into an environment at temperature Too. The heat transfer coefficient is calculated from

the change in temperature of the object as a function of time.

An analytical temperature-time relationship of the cooling process is obtained by equating the

change in the total enthalpy of the object to the net heat flow from the object to the surroundings

during time interval dt:

d [cpV(T- Too)]= -hA(T - Too) dt, (1)

where the symbols are defined in the table of nomenclature. Assuming c, p, and h to be constant,

integration of equation (1) from To to T over time t gives:

[,At

ln(T- Too)= ln(To - Too)- c_" (2)

Transforming the above equation into a non-dimensional form yields:

In0 = (-2Bi)r, (3)

where Bi=hR/k, 8 =(T-Too)/(To-Too), and r = c_t/R 2. Thus, the Biot number is found from the

slope of a In 0 versus _- plot and the heat transfer coefficient is given by:

Bi k
= --. (4)

R

In our experiments, the object consisted of a molten GaSh charge contained in a quartz am-

poule (discussed in detail in the experimental section). The environment was a vertical Bridgman-

Stockbarger furnace. The ampoule wall added a resistance to the heat transfer between the charge

and the furnace. To include the effect of such resistance on the heat transfer coefficient, some mod-

ificatlons of the therinophysical properties in equations (1-4) were necessary. (A similar approach

was undertaken by Naumann [5].) A mass weighted effective thermal conductivity and thermal

diffusivity are defined as follows:

keff = pcVckc + pq_Vqakqa, (5)
pcVc -I- pqaVqa

keff _ (pcVckc + PqaVqakqa)(Vc -[- Vqa )

_eff -- PavgCeff (pcVccc au PqaVqacqa)(pcVc -[- PqaVqa)' (6)



where all parameters are defined in the table of nomenclature. The effective heat transfer coefficient

then becomes:

_fr- BiefrkelT (7)
P_a '

where 1_ is the outer radius of the ampoule and Bi_ is found from the slope of the In 0 versus

reff= aefrt/K_ plot.

3 Validity of the Lumped-Capacity Model

In order todetermine the validity of the lumped-capacity model for different ranges of the

Biot number, a similar model was solved which takes radial temperature gradients in the sample

into account. This model assumes that the heat flow is axisymmetric, the temperature in the rod

is uniform in the axial direction, and the density, specific heat, and thermal conductivity of the

rod are independent of temperature. It is valid for any values of the Biot number. The solution to

this problem for the dimensionless temperature at the centerline of the rod is given in Carslaw and

Jaeger [10] as:

¢¢ Bi ( )T-T¢_ =2_ Bi2) exp -Fir , (8)o = To_ Too Jo(r.)(r +
n----I

where the eigenvalues rn are roots of the equation:

r.Jl(r.) = Bi Jo(r.), (9)

and Jo and J1 are Bessel functions of order zero and one, respectively. For the range of Blot

numbers studied, ten terms of the infinite series were determined to yield an accuracy of more than

5 significant digits in 6.

When the series in equation (8) is truncated after the first term, the following equation is

obtained:

f 2Bi l_r[,. (10)
Inez - In [ JoCI'z) _ -4-Bi 2)

In order to determine when the series could be truncated after the first term, the error in trunca-

tion had to be determined as a function of dimensionless time r and Biot number. The relative

truncation error was defined to be (01 - 0)/6, where 0 is the exact solution which was taken as the

value of # when the series was truncated after ten terms. The dimensionless time "refitpast which

the truncation error is less than 0.01 was plotted in Figure 1 for values of the Blot number between



0 and 0.9. For values of the Blot number between about 0.05 and 0.9, the critical dimensionless

time is given by the 5 th order polynomial fit:

r_t -" 3.02 Bi 5 - 8.54 Bi _ + 9.32 Bi 3 - 5.03 Bi 2 + 1.48 Bi - 0.0302. (11)

This means that equation (I0) isvalidforallBlot numbers as long as the dimensionlesstime is

greaterthan r_t. A plotof In0 versusr should be linearaftertime refit.

Ira linear regression analysis is carried out on experimental data at dimensionless times greater

than rcTit, rl is given by the square root of the negative of the slope. This value can then be used

to calculate the Biot number by two different methods. A value for the Biot number can be found

by solving equation (9). Also, the Biot number can be calculated from the intercept bo by finding

the root of the equation:

f(Bi) = eb° - 2Bi
Jo(rl) + Bi2)= 0. (12)

The value of the Blot number calculatedfrom the interceptis much more susceptibleto

experimentalerror.When doing a linearregressionanalysis,the value of the slope ismuch more

statisticallysignificantthan the valueof the intercept.This isbecause the interceptisat the edge

of the experimental data. Also, the Blot number ismuch more sensitiveto small errorsin the

interceptthan inthe slope.Figure2 shows the dependence ofthe Biot number on the interceptbo

and slopem of equation(10).The solidlineisa linearfitofthe Blot number versusthe intercept,

and isgiven by:

Bi ffi 4.24 bo. (13)

The dashed line is a linear fit of the Biot number versus the negative of the slope, and is given by:

Bi = 0.503 (-m). (14)

Thus, the Blot number is about eight times more sensitive to experimental errors in the intercept

than the slope. Another uncertainty when calculating the Blot number from the intercept is that

the experimentally determined value of the slope must be used in equation (12) to find the intercept.

This is an additional source of error.

Equation (10) is similar to the lumped-capacity solution, except that the intercept is not zero

and the slope is -r_ as compared to -2.Bi from the lumped-capacity model. The validity of the

lumped-capacity solution can be assessed by calculating the relative error caused by assuming the



Biot number equals the negative of the slope of a In0 versus r plot divided by two. The relative

error can be defined as (Bi-r_/2)/Bi, where B] is the actual Biot number and 1"1is calculated from

equation (9). The relative error is plotted in Figure 3 as a function of Blot number and is given by

the 2 _ order polynomial fit:

RelativeError = -0.0373 Bi2+ 0.248 Bi, (15)

for Biot numbers between 0 and 0.9. The relative error is almost a linear function of Biot number

in this region.

This analysissuggests that care must be taken when applying the lumped-capacity model

to experimental data. A linearregressionanalysisshould only be done for v_luesof r > Tc_t.

When the Blot number islarge,most of the temperature change could occur before7-_tand the

errorin assuming the slopeequals-2-Bibecomes large.Furthermore, the experimental errorsin

temperature measurement become largewhen T approaches Too. This isbest demonstrated by

example. Let us considerthe casewhen To = 800°C, Too = 700°C, and the errorin measurement

of the temperature isI°C. Ifthe actualtemperature is750°C, the errorin the resultingvalue of

In0 isonly 3%. However, when the actualtemperature is701°C, the erroris15%.

Another important point when applying the lumped-capacity model is that the straight line

should not be forced through the origin. A two-parameter regression analysis should be performed,

as suggested by equation (10).

4 Experimental -

The lumped-capacity techniquewas demonstrated using an ampoule and thermocouple ar-

rangement containingmolten GaSb situatedin the heater of a Bridgman-Stockbarger furnace at

temperature To. The ampoule was moved suddenly to a regionofdifferenttemperature Too. The

temperature versustime data were collectedas the malt equilibratedto the new temperature and

the lumped-capacitymodel was used todetermine the heat transfercoefficientbetween the ampoule

and furnace.

A schematic diagram of the experimental apparatus isshown in Figure 4. It consistedof

a 3-zoneverticalBridgman-Stockbarger furnace. The heating zones of the furnace were made of

Kanthal heating elements embedded in Fibrothalinsulation.The 5 cm long adiabaticzone was
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fabricated from zircouia insulation. The zones' temperatures were controlled to withing -bl°C using

digital PID temperature controllers and SCP,s. Quartz tubing was used as a liner in the furnace.

Two type K thermocouples, inserted halfway into the heaters between the furnace wall and the

liner, were used for control. Both ends of the furnace were plugged to eliminate the chimney effect.

The 0.9 cm ID and 1.1 cm OD quartz growth ampoule, shown in Figure 5, was loaded with

a 7 cm long GaSb charge, compounded from six-9s purity Ga and Sb in a rocking furnace for 5

hours at 820°C. The temperature in the melt was measured using a 0.041 cm diameter grounded

K-type thermocouple with a 310 stainless steel sheath and MgO as insulation (made by General

Measurements). The tip of the thermocouple was positioned 3 cm into the ampoule at the center

of the charge.

The molten charge was allowed to reach thermal equilibrium with the surroundings prior to

each experiment. For experiments H1 and H2, the loaded ampoule was positioned in the lower zone,

set at 890°C. The upper zone's setting was at 800°C. After the thermocouple reading became stable,

the ampoule was suddenly moved to the upper zone and held firmly. Meanwhile, the thermocouple

output was collected using a data acquisition system. In experiment H3, the upper and lower

zones were set at 870°C and 780°C, respectively. The ampoule in experiment H3 was initially

positioned in the upper zone. After the temperature became stable, the ampoule was suddenly

moved downward into the lower zone and held in the central region of this zone. The temperature

was recorded versus time using a data acquisition system.

5 Results

5.1 Experimental Determination of Heat Transfer Coefficients

Figures 6 and 7 show the actual thermocouple readings collected from the molten GaSb during

experiments H1, H2, and H3. The logarithm of the dimensionless temperature 0 was plotted versus

dimensionless time r_ in Figures 8-10. A linear regression analysis using NCSS Statistical Software

was performed to determine the slopes and intercepts of these plots.

Figure 7 depicts the experimental data and the resulting linear fit for experiment H1, where

the GaSb charge was raised from the lower zone at 890°C to the upper zone at 800°C. The value

of To was 871.3°C and T_ was 792.3°C. The linear regression analysis was performed on the data
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forre_ between 0.1and 18. There are two reasonsthattheselimitsforrefrwere chosen.The value

of rcrlt,beyond which the relationshipbetween In0 and _'e_islinear,islessthan 0.1. Also, the

experimentaldata tend to bend upward beyond re_ = 18. The reasonforthisisthe magnification

of experimental error at small valuesof 0. (Both of these explanationsare discussedfullyin

section3.)The resultinglinearfitis0 = (-0.142 4-0.0006)r+ (0.06974-0.0059).The uncertainty

valuesare 95% confidencelimitson the slopeand intercept,which can be transformed into95%

confidencelimitson the Biot number. The lumped-capacity solutionleadsto a Blot number of

0.07124-0.0003 determined from the slope.The two valuesof the Biot number determined using

the model accountingforradialtemperature gradientsare 0.07254-0.0003from equations(9 & 10)

and 0.07674-0.0008 from equations(10 & 12).

The same analysisas above was performed forexperiment H2, which was a repeatof experi-

ment H1 describedabove. However, To was 876.3°C and Too was 793.6°C in thisexperiment.The

reason for the differencein these valuesfrom those of experiment HI was probably a difference

in initialand finalpositionsof the chargefor the two experiments.The linearregressionanalysis

was performed on the data forrefrbetween 0.1 and 20 and the resultisshown in Figure 8. The

linearfitis0 = (-0.138 4-0.0004)7"4-(0.04074-0.0042).The lumped-capacity solutionleadsto a

Biot number of 0.06894-0.0002determined from the slope. The two valuesof the Biot number

determined usingthe model accountingforradialtemperature gradientsare 0.07014-0.0002from

equations(9 _: lO) and 0.07194-0.0005from equations(10 & 12).

The analysiswas performed for experiment H3, where the GaSb charge was lowered from

the upper zone at 870°C to the lower zone at 780°C. The value of To was 854.5°C and Too was

762.5°C.The linearregressionanalysiswas performed on the data for_'e_between 0.1and 15 and

the resultisshown in Figure 10. The linearfitis6 - (-0.171 4-0.0008)7"-F(0.05224-0.0073).The

lumped-capacity solutionleadsto a Biot number of 0.0855 4-0.0004 determined from the slope.

The two valuesofthe Biot number determined using the model accountingforradialtemperature

gradientsare 0.08734-0.0004from equations(9 & 10) and 0.09034-0.0012from equations(10 &

12).

The heat transfercoefficientsobtained forexperimentsHI, H2, and H3 are presentedin Table

1. There are three differentvaluesforeach experiment. One isfrom the lumped-capacity model

and two are from the model which accounts forradialtemperature gradients.
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5.2 Theoretical Estimation of Heat Transfer Coefficients

The heat transfer coefficient between the ampoule wall and the furnace could also be estimated

by a simple heat transfer formulation. The heat transfer coefficient is derived by summing the heat

transfer by radiation and conduction through the air gap between the ampoule and the furnace

wall in a concentric cylindrical system and equating it to the heat flux Q through the ampoule

containing the growth materials:

k_r(Th - Tffi)

Q =  (Th - T.) = T:) + (16)

The heat transfer coefficient determined from the above equation is:

(17)
= a_F(T_ + T_)(Th -t- Ta) "i- R, In _--_'

The contribution of natural convection between the ampoule and the furnace was determined

by computing the Grashof number in the air gap between the ampoule and the quartz liner:

Gr = g/3air(Th-Ta)(Rl- Ra)3pair_ (18)
p2

We estimated the Grashof number forour experimentsto be 246. Since thisislessthan 1000 [11],

we concluded that the contributionof naturalconvectionto the heat transferwas not significant.

Therefore, the convectiveheat transferterm was not includedin equation (16).

The view factorF = 0.9 was approximated using the view factorforfinite-lengthconcentric

cylinders(i.e.furnace-ampoule)[13].The ampoule temperature Ta was assumed to be the same as

the temperature ofthe molten charge,sincethe ampoule wallwas relativelysmallcompared to the

charge diameter.The steady-statetemperature readingin the charge Too and the temperature of

the controlthermocouple were used forTa and Th, respectively.The valuesof Ta = 792.5°C and

Th = 800°C for experiments H1 and H2, and TI=762°C and Th=780°C for experiment H3 were

used in calculationofthe heat transfercoefficients.

Using equation (17), the values of h calculated for experiments H1, H2, and H3 were 0.0220

(W/cm:-K), 0.0220 (W/cm2-K), and 0.0189 (W/cm2.K), respectively. The estimated heat transfer

coefficients are compared with the experimentally determined values in Table 1.



6 Discussion

Figure 11 depicts the comparison between the Blot numbers calculated from the lumped-

capacity model (Bi = -m/2) and from the model including radial temperature gradients (P1 = _/:"m,

Bi = rlJ_(rl)/Jo(rl)). The horizontal and vertical fines in the figure represent 95% confidence lim-

its on the values of the Biot number. The three data points would fall along the solid diagonal

line if the results from the lumped-capacity model agreed exactly with the theory which considers

radial temperature gradients in the charge. The dotted line represents the calculated relative error

between the two models and is given by equation (15).

The Blot numbers calculated from the model accounting for radial temperature gradients were

greater than those calculated from the lumped-capacity model. The fact that the three data points

fall on the dotted line proves the relationship between the lumped-capacity Blot number and the

radial temperature gradient Blot number is satisfied exactly. If the Blot number is determined

using the simple lumped-capacity model, the correct Blot number can be calculated by finding the

root of the rearranged form of equation (15):

f(Bi) = 0.0373 Bi 3 - 0.248 Bi 2 + Bi - BiL = 0, (19)

for values of the Blot number between 0 and 0.9, where BiL is the Blot number calculated using

the lumped-capacity model.

In theory, the value of the Blot number obtained from the slope and equation (9) should be

the same as the value obtained using the intercept. The solution to the problem which accounted

for radial temperature gradients was for a charge made of a single material, while the charge in

our experiments consisted of a molten semiconductor contained in a quartz ampoule. When radial

temperature gradients were considered, the procedure of using mass weighted thermal properties

probably led to underestimation of the radial temperature gradients present. The ampoule, which

caused a discontinuity in the radial temperature profile, acted as an additional barrier to heat trans-

fer that could not be properly accounted for by adjusting the physical properties. The difference

between the values of the Biot number obtained from the slope using equation (9) and from the

intercept represents a failure of the exact model.

Experiments H1 and H2 were almost identical, yet the Biot numbers calculated from each

differ by about zt%. This difference could have been caused by a change in the position of the
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charge within the furnace. The length of the heated zones were 15 cm, not overly long _:ompared to

the charge length of 7 cm. It is possible that one or both experiments were influenced by the charge

being positioned in a region where the temperature changed with height in the furnace. This would

cause axial temperature gradients in the melt which would violate the assumptions of the models

used. However, differences in Biot numbers less than 10% are not significant when considering the

fact that heat transfer coefficients depend continuously on position in a crystal growth furnace, and

this technique is being used to get an overall value for the heat transfer coefficient in a zone.

The Biot number calculated from experiment H3 was about 20% higher than those calculated

from experiments H1 and H2. Experiments H1 and H2 measured the heat transfer coefficient in the

upper zone, while experiment H3 measured that in the lower zone. The difference in heat transfer

characteristics between the upper and lower zones was unexpected. These zones are constructed

identically. The temperature rolls off at the bottom of the lower zone. It is possible that this

temperature gradient led to axial heat transfer which increased the heat transfer coefficient.

It is also possible that natural convection was present in the liquid during the experiments.

However, the effect of natural convection would not be expected to be large in a low Prandtl number

fluid like a semiconductor melt.

The values of the heat transfer coefficient calculated experimentally differ by only 15% from

simple theoretical estimations. This difference is quite small and could be due to inaccuracies in

the values of emissivity and view factor.

7 Conclusions

A novel and practical approach was developed to determine the average heat transfer coefficient

between a charge and directional solidification furnace. An ampoule containing molten GaSh and a

thermocouple was suddenly moved from a high temperature region to a lower temperature region.

The temperature decay versus time was recorded and used in a lumped-capacity model to determine

the effective Blot number between the charge and furnace. The validity of the lumped-capacity

method was assessed using a model which accounted for radial temperature gradients in the charge.

It was determined that the lumped-capacity model is accurate within a relative error given

by equation (15) for Blot numbers between 0 and 0.9. However, this is only if the linear regression
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analysison thein8 versusr plotiscarriedout forvaluesoftimegreaterthan a criticaldimensionless

time. This dimensionlesstime rcritisgivenby equation(11)forBiotnumbers between 0.05and 0.9.

The straightlinefitshould not be forcedthrough the origin,sincethe theory which accounts for

radialtemperaturegradientspredictsa slopeand a non-zerointercept.For valuesofr greaterthan

rcrit,the Blot number can be determined exactlyby obtainingrl from the slopeof a In8 versus

r plot. This value can then be used to calculatethe Blot number from equation (9) or used in

conjunctionwith the interceptofthe In8 versusr plotto findthe Blot number from equation(12).

However, the valueofthe Blot number determined using the interceptismuch more susceptibleto

experimentalerrors.

The difference between the experimentally determined Blot numbers calculated from the

lumped-capacity model and the model accounting for radial temperature gradients was exactly

as predicted by theory. If the Blot number is determined using the simple lumped-capacity model,

the correct Blot number can be calculated by finding the root of equation (19) for values of the

Blot number between 0 and 0.9. However, with the computing power and canned software available

today, it might be easier to find the Blot number directly from equations (9 _ 10). The Fortran

functions DBSJ0 and DBSJ1 from the IMSL Library [19] were used by the authors to calculate the

Bessel functions Jo and J1, respectively.

The heat transfer coefficient between the ampoule wall and the furnace was estimated by a

simple heat transfer formulation accounting for conduction and radiation across the air gap between

the furnace and ampoule. Remarkably, the results differ by only 15_ from the values calculated

by the lumped-capacity method.
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Nomenclature

: Surface area of the charge (17.28 cm2).

Intercept of equation (10).

Biot number _.

A

bo

Bi :

Bi_fr :

BiL :

C,..

Ceff :

Cqa :

F

g

heft :

Jn

kc

1_ :

L

m -"

Ra :

:

:

th :

t

T

Effective Blot number between the charge+ampoule and furnace ._R.

Blot number calculated by the lumped-capacity method.

Specific heat capacity of the molten GaSb charge calculated using

thermal conductivity, thermal diffusivity, and density data (for GaSb 0.328 J/g-K).

Mass weighted average effective specific heat capacity of charge+ampoule combination.

pcvc¢c+pq,vq,cq_ ( 0.479 3/g-K for present experiments).
Cet_ --" pcVc_pqaVqa

Specific heat capacity of ampoule (Cqa=l.19 J/g.K at 1075 K for fused silica [12]).

View factor from furnace wall to the ampoule (0.9 for present configuration).

GravitaUonal acceleration (980 cm/s2).

Average heat transfer coefficient between the growth material and

the furnace (W/cm2.K).

Effective average heat transfer coefficient between the charge+ampoule and

the furnace (W/cm2-K).

Bessel function of order n.

Thermal conductivity of the charge (0.171 W/cm.K for molten GaSb [13]).

Mass weighted effective thermal conductivity of charge+ampoule

tPcVck'+pq'Vq'k_'_ (0.146 W/cm-K).kef] = x ,ocVc+PqaVqa. J"

Thermal conductivity of air (5.2x10 -4 W/cm.K at 1100 K [14]).

Thermal conductivity of ampoule wall (2.42x10 -s T + 4.48x10 -s W/cm.K for fused

silica [15], kq_ = 0.0308 W/cm.K at T=1075 K).

Length of the charge (7 cm).

Slope of linear equation.

Outside radius of ampoule (0.55 cm).

The charge radius (0.45 cm).

Inside radius of furnace (3.81 cm).

Radius of the furnace liner (1.0 cm).

Time (s).

Temperature at time t (°C).
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Too : Steady state t_mperature of the melt (°C).

Tf : Furnace temperature (°C).

Ta : Ampoule temperature (°C).

Vqa : Volume of the section of ampoule containing the charge;

Vq_ = _rL(R,2- Rc2) (2.2cmS).

Vc : Volume ofthe charge (4.46cm3).

ac : Thermal diffusivityof charge(0.087cm2/s formolten GaSb [13]).

aefr : Effectivethermal diffusivityofcharge+ampoule (0.0628cm2/s).

/_alr : Thermal expansioncoefficientof air(0.00367I/K [15]).

: Emissivityofthe furnace(forKanthal [18]_ - 0.75).

0 : Dimensionlesstemperature ((T - Too)/(To- Too)).

/z : Viscosityofair(1.84x10-4 g/cm-s [15]).

P_r : Density ofair(1.19x10-3 (g/cm 3 [15]).

pcv_+pq,Vq, (4.85 g/cm3).Pay : Average density of charge+ampoule, p_v = vc+vq,

Pc : Density of charge (5.98 g/cm 3 for molten GaSb at 800°C [17]).

pq_ : Density of ampoule wall, (2.28x10-4T + 2.273 g/cm 3 for fused silica [16]

pq_ = 2.586 g/cm 3 at 1075 K).

o : Stephan-Boltzman constant (5.67x10 -12 W/cm 2.K4).

r : Dimensionless time (-_-).

rdr : Effective dimensionless time (_).

rn : n _h eigenvalue.
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Figure 1. The dimensionless time r_t versus Blot number past which the error in 8 caused by

truncation of equation (8) after the first term is less than 0.01. The line represents the 5 _h order

polynomial fit given by equation (11).
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Figure 2. The dependence of the Biot number on the intercept bo and slope m of equation (10).

The solid line is the linear fit of the Biot number versus the intercept given by equation (13) and the

dashed line is the linear fit of the Biot number versus the negative of the slope given by equation

(14).
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Figure 3. Relative error caused by assuming the Biot number equals -0.5 times the slope of a ln8

versus r plot. The line represents the 2 _ order polynomial fit given by equation (15).



K-type _
Thermocouple Zirconia Insulation

_l.....__Fibrothal
Insulation

Kanthal

Heating
Elements

ii .mQ

i!! •
!ii •
ili •

. ii,,!lii!iiiii!i ii
:ili ¢

7ii ¢

ii: ¢

:ii: ¢

_ii! ¢
!_!i ¢
,i_i ¢

Quartz
Liner

Zirconia
Insulation

K-type Zlrconia Insulation
Thermocouple

Figure 4. Schematic diagram of vertical Bridgman-Stockbarger furnace.



Quartz ampoule
v

Vacuum seal

GaSb charge !i:!_ i!iiii!i::!i

K -ty p e th e r m o co u p Ie _/_. ::_:::_::_::_::_
with 310 s.s. sheath

Graphite plug

Quartz capillary
plug

:_i_i ..................... i!iiiii::

iliili_ i!iiiiiii

Zenith 248Microcomputer [

Metra-Byte. M.ultichannel]

ata Acqmsltlon System_,)

Vacuum seal
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Figure 8. Experimental data and the resulting linear fit (It 2 = 0.9993) for experiment H1.
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Figure 9. Experimental data and the resulting linear fit (1l 2 = 0.9997) for experiment H2.
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Figure 10. Experimental data and the resulting linear fit (R 2 = 0.9991) for experiment H3.



Experiment

HI

H2

H3

h (W/cm2.K)

Lumped-Capacity

Modal

0.0189

0.0183

0.0227

Radial Model

Equations (9 & 10)

0.0193

0.0186

0.0232

Equations (10 & 12)

0.0204

0.0191

0.0240

Theoretical

Estimation

0.0220

0.0220

0.0189

Table 1. Comparison of the experimentally determined and theoretically estimated values of the

heat transfer coefficient for experiments H1, H2, and H3.
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Figure 11. Comparison between the Blot numbers calculatedfrom the slope using equation (3)

(lumped-capacitymodel) and using equation (9). The horizontaland verticallinesin the figure

represent95% confidencelimitson the valuesof the Biot number. The dotted linerepresentsthe

calculatedrelativeerrorbetween the two models and isgiven by equation (15).


